美國著名數(shù)學教育家波利亞說過,掌握數(shù)學就意味著要善于解題。而當我們解題時遇到一個新問題,總想用熟悉的題型去“套”,這只是滿足于解出來,只有對數(shù)學思想、數(shù)學方法理解透徹及融會貫通時,才能提出新看法、巧解法。高考試題十分重視對于數(shù)學思想方法的考查,特別是突出考查能力的試題,其解答過程都蘊含著重要的數(shù)學思想方法。我們要有意識地應(yīng)用數(shù)學思想方法去分析問題解決問題,形成能力,提高數(shù)學素質(zhì),使自己具有數(shù)學頭腦和眼光。
高考試題主要從以下幾個方面對數(shù)學思想方法進行考查:
① 常用數(shù)學方法:配方法、換元法、待定系數(shù)法、數(shù)學歸納法、參數(shù)法、消去法等;
② 數(shù)學邏輯方法:分析法、綜合法、反證法、歸納法、演繹法等;
③ 數(shù)學思維方法:觀察與分析、概括與抽象、分析與綜合、特殊與一般、類比、歸納和演繹等;
④ 常用數(shù)學思想:函數(shù)與方程思想、數(shù)形結(jié)合思想、分類討論思想、轉(zhuǎn)化(化歸)思想等。
數(shù)學思想方法與數(shù)學基礎(chǔ)知識相比較,它有較高的地位和層次。數(shù)學知識是數(shù)學內(nèi)容,可以用文字和符號來記錄和描述,隨著時間的推移,記憶力的減退,將來可能忘記。而數(shù)學思想方法則是一種數(shù)學意識,只能夠領(lǐng)會和運用,屬于思維的范疇,用以對數(shù)學問題的認識、處理和解決,掌握數(shù)學思想方法,不是受用一陣子,而是受用一輩子,即使數(shù)學知識忘記了,數(shù)學思想方法也還是對你起作用。
數(shù)學思想方法中,數(shù)學基本方法是數(shù)學思想的體現(xiàn),是數(shù)學的行為,具有模式化與可操作性的特征,可以選用作為解題的具體手段。數(shù)學思想是數(shù)學的靈魂,它與數(shù)學基本方法常常在學習、掌握數(shù)學知識的同時獲得。
目 錄
前言 ……………………………………………………… 2
第一章 高中數(shù)學解題基本方法 ……………………… 3
一、 配方法 ……………………………………… 3
二、 換元法 ……………………………………… 7
三、 待定系數(shù)法 ………………………………… 14
四、 定義法 ……………………………………… 19
五、 數(shù)學歸納法 ………………………………… 23
六、 參數(shù)法 ……………………………………… 28
七、 反證法 ……………………………………… 32
八、 消去法 ………………………………………
九、 分析與綜合法 ………………………………
十、 特殊與一般法 ………………………………
十一、 類比與歸納法 …………………………
十二、 觀察與實驗法 …………………………
第二章 高中數(shù)學常用的數(shù)學思想 …………………… 35
一、 數(shù)形結(jié)合思想 ……………………………… 35
二、 分類討論思想 ……………………………… 41
三、 函數(shù)與方程思想 …………………………… 47
四、 轉(zhuǎn)化(化歸)思想 ………………………… 54
第三章 高考熱點問題和解題策略 …………………… 59
一、 應(yīng)用問題 …………………………………… 59
二、 探索性問題 ………………………………… 65
三、 選擇題解答策略 …………………………… 71
四、 填空題解答策略 …………………………… 77
附錄 ………………………………………………………
一、 高考數(shù)學試卷分析 …………………………
二、 兩套高考模擬試卷 …………………………
三、 參考答案 ……………………………………